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An Accurate Field Matching Analysis of
Waveguides of Complex Cross-Sectional
Geometry Loaded with Magnetized Ferrite Rods

Michal Okoniewski, Member, IEEE, and Jerry Mazur

Abstract—Many structures, such as ferrite phase shifters and
rectangular waveguides loaded with ferrite or dielectric rods of
circular cross-section are difficult to analyze. We have developed
a field-matching technique capable of analysis of waveguides
of complex cross-sectional geometry comprising longitudinally
magnetized ferrite rods. The method has been implemented on a
PC computer equipped with a Microwave i860 board. Computa-
tions of inner products by FFT resulted in three-fold increase in
computational speed and two-fold reduction of computer memory
required. The method provides results with high accuracy and
within a reasonable computing time. Convergence properties,
numerical and experimental results are presented.

[. INTRODUCTION

AVEGUIDES of complex cross-sections containing

dielectric or ferrite materials pose challenging ana-
lytical problems. Earlier analyses were reviewed by Saad
in 1985 [1]. Recent progress in numerical techniques has
resulted in new solution methods applied to complex shape
guides (for an extensive list of references see [2]). In [3] an
attempt was made to apply time domain techniques to analyze
structures comprising ferrite materials. Although time domain
techniques have potentials to analyze complicated structures,
the implementation used in that paper relied on a complicated
equivalent circuit representation of ferrite media, and as a
result simulations of only simple homogeneous waveguides
were reported.

In this paper we describe an extension (first presented in
[4]) of the method based on the mode matching technique
and previously reported to analyze planar circuits [5]-[7]
and complex, dielectric loaded waveguides [8]. Waveguides
having complicated cross-sectional geometry and comprising
circularly-cylindrical ferrite-dielectric rods magnetized in a
longitudinal direction can be analyzed with this method.
Although the field matching is not usually recognized as a
very flexible method. the formulation we use let us analyze
a wide class of waveguides (see Figs. 2 and 3). This class
of waveguides includes rectangular waveguides loaded with
ferrite rods, which have not been rigorously analyzed before.

Following the description of the analysis, convergence prop-
ertiecs of the method are discussed. Numerical results and
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Analyzed structure. (a) Schematic presentation. (b) Structure of IG.

Fig. 1.

experimental data validating our theory are given. The exam-
ples of new, potentially useful structures (e.g., ferrite loaded
waveguides of crossed-rectangular and finned-circular cross
sections) are outlined.

II. ANALYSIS

A cross-sectional geometry of the analyzed waveguide is

shown in Fig. 1(a.) The following assumptions are made:

1) the time dependence is harmonic (the term exp (jwt)is
suppressed for the sake of clarity);

2) the structure is homogeneous in the x direction (perpen-
dicular to the plane of the drawing) and the z dependence
is exponential, exp (—j0z), where § is the propagation
constant;

3) all conductors in the structure are perfect and constitutive
parameters are linear and time invariant;

Note, however that ferrite and dielectric materials are not
assumed lossless.

0018-9480/95$04.00 © 1995 IEEE
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Fig. 2. Examples of ferrite or dielectric loaded structures which can be
analyzed by our method. (a) Trapezoidal waveguide. (b) “Mage” guide. (c)
Cross-rectangular guide. AG’s assumed as rectangular guides. Other examples
in Fig. 3.

®)

Fig. 3. AG as (a) secioral guides and (b) examples of wavegunides with
sectoral AG’s.

Essential steps of the analysis are as follows:

1) We divide the structure into regions, in which solutions
of Maxwell’s equations can be found relatively easily,
namely:

« Inner cylindrical guide (IG) is defined in cylindrical
coordinates (delineated with curve {é—Fig. 1(a)). IG
is transversely inhomogeneous and consists of an

arbitrary number of cylindrical layers. All layers but
the outer most one can be longitudinally magnetized
ferrites.

e Isotropic and homogeneous attached guides (AG).
These guides can take a variety of shapes, for
instance a rectangular guide open at one side (as
in Fig. la), or a sectoral guide (Fig. 3).

2) We find the general solution of Maxwell’s equations
in IG. Here we exploit the transfer matrix concept
(modified for the case of a ferrite IG) to treat the layered
structure of IG [8], and express the field quantities in the
outermost layer of IG in terms of the amplitudes of the
innermost one.

3) We find the field in AG’s in terms of series of eigenfunc-
tions fulfilling all the boundary conditions except those
on the interface with IG.

4y Now we match the fields, i.e., match the general solu-
tions found in the regions described. This yields a set of
function equations.

5) We transform this set of equations into an algebraic
matrix system using the functional analysis techniques
and truncating the series. By elimination of the unknown
set of amplitudes in IG region we arrive at the homoge-
neous system of equations. Setting the determinant of the
system’s matrix to zero, we get the dispersion equation.

A. Fields in IG Region

To find the field vectors in the outermost cylinder of IG
we use the transfer matrix concept [9] adopted for cylindrical
ferrite media. General solutions to Maxwell’s equations in an
arbitrary, say /th, cylinder of IG are obtained first. Since this
layer is filled with ferrite medium magnetized in the direction
of propagation, the electromagnetic field is governed by the
following pair of coupled equations [10]:

. bay
(V2 = 8% + Kietpiem,) Do + iPkocr —‘ljll H,=0
2 1 o 2 3 . Ha,
Vt - _Ig + kOEl Hx - jﬁkO"_Dx =0 (1)
1 Iz

where D is an electric flux and H is proportional to magnetic
field—H = VeolioH, while piq,, p; denote the relative off-
diagonal and diagonal elements of the permeability tensor,
respectively, Heft, stands for the relative effective permeability
[11], ¢ is the relative permittivity, and kg = w,/egpio.

We seek the solution to (1) in terms of series of eigenfunc-
tions

+oo too )
DY =" Dhe Y= > Hhe (@)
k=—o0 k=-—00

Each eigenfunction consists of coupled partial waves D, and

Dt =Df+RME,  HE=SDhL+HY )
defined as
Dzl = [Alfll]k(Xll p)+ Alek(Xllp)]ejkV’
Hey = [Bfle(Xlz p) + BYYi(x1.0)) elke 4
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where £ is an integer number. and the eigenvalues x;, , can
be found from the following expression:

o=

—4(ac — bd)] (3

where
a = ]»‘(z)que{fl — /32 b= jﬂkoél&
My
. 1 .
c=ka——F  d= 0kt
i M
and Jp(-). Yi(-) are Bessel and Neumann or modified Bessel

and McDonald functions, depending on the sign of k2 — 32.
Note that the coupling coefficients R; and 5

2 2
X1, — Xi, —

b d
vanish when infinite bias magnetization H, is applied.

Once we have obtained the longitudinal field components,
the transverse vectors may be computed from

S =

R, =

. _ik 9
[Ep [:]p} _ p Op
E, H, o 1k
- ap ’ -
jk’o/EOSZ —jko 1
—D,
_Je ko te — 285U | Xy
- €0 E/ I3 [
gko/€o —jkol%y 1
+ S He | (©
— LR kot Ry — 42 | Xio

Let us now impose the continuity conditions between two
adjacent IG layers. Due to the orthogonality of {e/*¥} on
the layer interfaces, we can consider continuity for each
eigenfunction separately. Therefore, for the field components
generated by kth eigenfunction, we have

B = B B = B ™

I4+1 ol Frolt-1
«:k—HOJr Hgy = Hy ™. ®)
Substituting the formulas in (2). and quantities obtained from
(6) for the field components, we can rewrite (7) in a matrix

form relating amplitudes of eigenfunctions in {th and (I+1)
layers

X Ak l+1 Al+1[ﬂ =7y )]

where AF =
Appendix.
From that we easily proceed to the following equation:

ko vk
Al+1 - étr[

[}, A5, BY, BE]T, and X7 is given in the

(10)

Al |p:7‘z
with

1yk
(—z+1) X,

_tr]

Now we see that the amplitudes in the layer (I+1) can
be expressed in terms of the amplitudes of [th layer. If we
apply this algorithm consecutively to every pair of adjacent

layers, starting from the innermost, we arrive at the following
formula:

Af = XX A (11)
where the global transfer matrix é; is defined as
L-1
k _ k
Xno= 115 (12)

=1

The transfer matrix approach to the analysis of IG has
several advantages, namely
¢ the complexity of the inner structure of IG is hidden in
éf}r. In subsequent steps of the analysis the IG structure
is only referred to through the transfer matrix.
+ the transfer matrix approach can be easily algorithmized

B. Fields in AG’s

The AG’s may have a variety of cross-sectional shapes,
ranging from rectangular waveguides open at one side, sectoral
guides, to parallel plate guides with magnetic or electric walls.
We require however the Helmholtz equation formulated in AG
region to be separable. Such a general formulation lets us
handle a wide class of AG’s.

The solution of Maxwell's equations is expressed as a series
of type E and H modes, complete in an AG region

Dt = Za DL
-L = Z hL .Bll

(13)

where ¢ denotes ith AG, n—nth eigenfunction, and e!, hl,
are unknown amplitudes. Superscript L indicates quantities
defined in AG's.

In accordance with the earlier formulation, we assume the
eigenfunctions DL+ and H;- in the following form:

l?j_rlj: = e 701 ()T E (go) (14)
Hyp® = e P00 ()05 (go) (15)

where: ¢1. go are transverse coordinates of a system in which
AG is defined, (y and z in case of Fig. 1).
The transverse components can be found from [13]

r7 1 9 1 8
Eqp Hy 1| %29¢2 R1i0q
5 :3 1 8 1 8
By Hy, Tda s 9a
—jko/eoH,  jkoDq
X (16)
1 2] 1 9 713
~me oz Pr —uoHe

where Ry, hy are metric coefficients of coordinate system, and
6 is a separation constant.
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C. Field Matching

At this stage of the analysis we have the general solutions
to Maxwell’s equations in each distinguished region of the
structure. To solve the boundary problem however, we have
to match the fields, i.e., to ensure the continuity of the fields
on all the interfaces between regions. Regions IG and AG’s
partially overlap (Fig. 1), and therefore a number of interfaces
can be specified on which the continuity conditions for the
fields can be imposed. Of practical importance are only these
interfaces, on which it is possible to take advantage of the
orthogonality properties of eigenfunctions i.e., interfaces &
and (. Furthermore, a number of options are available: we
can match all tangential components on £ or on (, or we
can formulate F field conditions on one and H fields on the
other interface or vice versa. The latter options offer better
numerical behavior of the resulting algorithm, since they lead
to a bi-directional orthogonalization, which provides more
flexibility in selecting the number of eigenfunctions taken for
field approximation in the regions of the structure [8], [12].
We will use this approach henceforth.

Let us consider the continuity conditions for E fields on ¢,
and for the H fields on & (for the sake of clarity we assume in
this section that AG’s are defined in rectangular coordinates,
as in Fig. 1)

fIac:) = Zy_q I;IaJ:'Bz(‘P)
- a7
= Zi:l Hla',chi(‘P) ¢
E; = Ef\il EjBi(‘P)
(13)

SM, Boa, Bp) = T, EXBi(v)|

where B is a function selecting ith AG region.

To transform (18) into an algebraic system we take the inner
products of its both sides with every function from the set of
IG eigenfunctions, {e7*¥}, with the definition of the inner
product ensuring orthogonality

i 19) gd—efff dé = /Zﬂfg*Rddso

The operation can formally be written as follows:

) 0B
< e_]k‘p> :<2 ) e“f’“@>. (20)
§ 3

S HEB(p)
21

19

S8y

As a result we obtain a matrix formula

cHREH

where T is built of diagonal sub matrices, A is dense and

[AB])T and [eh]? are vectors storing amplitudes of eigen-
functions of IG and AG’s, respectively [12].

A similar procedure is applied to (18). In this case, we take
the imnner product of its both sides with every eigenfunction
of AG’s. The appropriate inner product for this operation is
defined as follows:

(F gy, ;{ Ha By dc = [ Hg™) ds @)

—a,

and the formal description of the procedure is:

(Eg | T (20)), = (Bx | To(20)), (23)
flo = i _/pl o
(B, | 9h(a)) = (BT | 940), @4
fort=1,2---,M and n =0,---, N;.
(25)
This operation yields the following matrix relation
flf]

where A is built of diagonal matrices and V is dense [12].
In both (21) and (26) we notice the same vectors of unknown
amplitudes. One of them can be eliminated which leads to a
homogeneous system of algebraic equations. After setting its
determinant to zero, the dispersion equation is obtained

a-uwaff] =0

III. APPLICATION OF FFT

@7

Critical from the point of view of the computation efficiency
is the evaluation of the inner products. The inner products
encountered in our algorithm have the form

01
S = / S(p)e™ ™ dp
—6,

where S is a certain function of ¢. These products must be
computed for %k ranging from 1 to K, where K is num-
ber of eigenfunctions taken into account in the IG. Simple
transformation of variables, and a modification of S

s)={3

leads to the modified formula for Sg

le| > 61

lo| < 61 Pt

27
Sk = 27r(—1)ki/ S(@)e %2 dp.
2 Jo

In this formula we easily recognize a term which represents
a Fourier expansion coefficient of function S(¢) and which
may be efficiently computed by FFT. Using this strategy we
have gained three-fold increase in computational speed and
two-fold reduction in computer storage.

IV. VERIFICATION AND RESULTS

Numerous numerical and experimental tests have been
carried out in order to verify the method. Various hollow
and homogeneously filled waveguides were evaluated using
the program, and the results obtained matched the known
analytical formulae. In further tests, parameters of various
dielectric guides were computed for which solutions had
previously been published. For example, in Table I results
of our, and previously published computations of resonance
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TABLE 1
COMPUTED AND MEASURED RESONANCE FREQUENCIES (IN GHz) oF
Quasi-TEj g1 AND Quas-TE2qg; MobEs oF aN “IMAGE” GUIDE oF FiG. 5

Mode || Present | Measured | Theory | Theory
method | [15] [15] [16]

TEip || 1.263 | 1.263 1.267 | 1.269

TEs; || 1.678 | 1.672 1.700 | 1.678

Relative error in %

Fig. 4. Error in the cut-off frequency.of the fundamental mode of a hollow
rectangular waveguide as a function of numbers of modes taken in IG and
AG’s regions. Wavegnide dimensions: 22.86 x 10.16 mm.

frequencies of an “image” line are presented—a high accuracy
of our method can be observed.

A standard, hollow rectangular waveguide was used to test
the convergence properties of the method. This simple struc-
ture is not a trivial one from the standpoint of the complexity
of the method used in computations of its parameters. Since
the computations of cutoff frequencies are often particularly
prone to errors, we used them as a target in testing. The results,
presented in Fig. 4, display typical features of field (or mode)
matching method, namely:

» the method can provide very accurate results, the error is
less then 0.03% if 20-30 eigenfunctions are taken in IG
and AG’s,

 if the number of eigenfunctions taken into account in
IG substantially differs from that of AG’s, a relative
convergence effect may be observed [14], and

¢ as the number of modes increases the area of low relative
error widens.

In particular, it can be observed in Fig. 4, that if the number
of modes in IG is low, the method may converge to a solution
which carries a relative error of 1%. On the other hand, if the
number of modes in IG equals to the total number of modes
in AG’s, a high accuracy is obtained, even if low number of
modes is taken into account.

Dispersion characteristics of a rectangular waveguide con-
taining a magnetized ferrite rod are presented in Fig. 6. As
the frequency approaches f; = yuo+/H;(H; + M) (where
gyromagnetic ratio v = 27.997 - 109 [C/kg]), volume mag-
netostatic waves appear and the fundamental (dynamic) mode
transforms into a magnetostatic one. For frequencies ranging
from f; to fo = yuo(H; + 0.5M) surface magnetostatic
waves may be excited, some having backward wave nature.
Near f, the second cutoff frequency of the fundamental mode

Fig. 5. Shielded “image” guide. € = 2,495, R = 5cm, a = 20 cm, b = 10
cm. Length of the resonator: 11.1 cm.
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Fig. 6. Dispersion characteristics of a rectangular waveguide comprising
longitudinally magnetized ferrite rod. Ms = 175011;; ﬁmﬁ, H; =1.143% M3,
Waveguide dimensions 22.86 X 10.16 mm.

can be observed. The remaining part of the characteristics is
similar to those of a dielectric loaded waveguide [12].

The proper behavior of the method in computations of
ferrite loaded structures was verified experimentally. A sec-
tion of a rectangular waveguide loaded with a longitudinally
magnetized ferrite rod was terminated with metallic walls to
form a resonator. The resonance frequency was computed
and measured experimentally as a function of the applied
external biasing magnetic field as shown in Figs. 7 and 8. The
theoretical and experimental data are in good agreement which
validates the method. An interaction between ferrite medium
and e.m. wave weakens when the ferrite rod is shifted from
the center toward the narrow waveguide wall as illustrated in
Fig. 7. Conversely, if the ferrite material is positioned close
to the wide waveguide wall the interaction with e.m. field
intensifies and, moreover, the sensitivity to the strength of the
biasing magnetic field increases—Fig. 8. Although this type
of structure is widely used (e.g., in phase shifters) it has not
been rigorously analyzed before.

In a cross-rectangular waveguide comprising longitudinally
magnetized ferrite rod, a Faraday rotation phenomenon can
be observed. This structure provides substantial flexibility in
shaping of the frequency characteristics as shown in Fig. 9,
and is potentially useful in ferrite devices.

V. CONCLUSION

We have presented a method of analysis of waveguides of
complex cross-sectional geometry, comprising longitudinally
magnetized ferrite-dielectric rods. The method can be used
to analyze a wide class of waveguides, including rectangular
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Fig. 7. Resonance frequency versus external dc magnetic field in resonator
consisting of a section of rectangular guide loaded with a ferrite rod. (¢ =
3mm, M, = 95054 ¢, = 13), @ = 22.86 mm, b = 10.16 mm.
Ap—offset of the rod from the center toward narrow waveguide wall.
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Fig. 8. Resonance frequency versus external dc magnetic field in resonator
consisting of a section of rectangular guide loaded with a ferrite rod. (¢ =
3 mm, My, = 1750—%, € = 13.5), a = 22.86 mm, b = 10.16 mm.
Ap, A,—offset of the rod from the center toward narrow or wide waveguide
wall, respectively.
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Fig. 9. Rotation of the polarization plane in a cross-rectangular waveguide
comprising longitudinally magnetized ferrite. r = 2.5 mm, a = 7 mm,
M, = 2200 =54 H, =0, ¢ = 13.5.

waveguides loaded with ferrite rods. These structures have
not been rigorously analyzed before. In computations of inner
products encountered in the method we used FFT techniques
which resulted in greater computational speed and reduced
computer storage requirements. The numerical and experimen-
tal results provided validate the method of analysis presented
in the paper.

APPENDIX

A =

r ’ ! IRV { I ! Iyt { T
wpdy +urdn weY)y +uiYn vl +oidiz v 401V

l I ! Iyt { 7t i !
usJin — wadpy ugYu —ua¥n vsdie —vgdip vaVie — vinz

ﬁ.fﬂ ﬁyh 606” ——RJio €0€fz ——RY);»
L Sdn SYn Jig Y A
where
ull = EOifl %)% ’Ui = 6oifl %)%R
“lzzﬂefig Ulzsz,%
uh= Lk (jhohet + £5) of = LE(jholRr+ £)
up =% vh = 5%

and Ji; » (or Y) denote appropriate Bessel function of argu-
ment Xéjgp, while prime denotes differentiation with respect
to p.
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