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An Accurate Field Matching Analysis of

Waveguides of Complex Cross-Sectional

Geometry Loaded with Magnetized Ferrite Rods
Michal Okoniewski, Member, IEEE, and Jerry Mazur

Abstract—Many structures, such as ferrite phase shifters and

rectangular waveguides loaded with ferrite or dielectric rods of
circular cross-section are difficult to analyze. We have developed
a field-matching technique capable of analysis of waveguides

of complex cross-sectional geometry comprising longitudinally
magnetized ferrite rods. The method has been implemented on a
PC computer equipped with a Microwave i860 board. Computa-

tions of inner products by FFT resulted in three-fold increase in

computational speed and two-fold reduction of computer memory
required. The method provides results with high accuracy and

within a reasonable computing time. Convergence properties,
numerical and experimental results are presented.

I. INTRODUCTION

w

AVIEGUIDES of complex cross-sections containing

dielectric or ferrite materials pose challenging ana-

lytical problems. Earlier analyses were reviewed by Saad

in 1985 [11. Recent progress in numerical techniques has

resulted in new solution methods applied to complex shape

guides (for an extensive list of references see [2]). In [3] an

attempt was made to apply time domain techniques to analyze

structures comprising ferrite materials. Although time domain

techniques have potentials to analyze complicated structures,

the implementation used in that paper relied on a complicated

equivalent circuit representation of ferrite media. and as a

result simulations of only simple homogeneous waveguides

were reported.

In this paper we describe an extension (first presented in

[4]) of the method based on the mode matching technique

and previously reported to analyze planar circuits [5]–[7]

and complex, dielectric loaded waveguides [8]. Waveguides

having complicated cross-sectional geometry and comprising

circularly-cylindrical ferrite-dielectric rods magnetized in a

longitudinal direction can be analyzed with this method.

Although the field matching is not usually recognized as a

very flexible method, the formulation we use let us analyze

a wide class of waveguides (see Figs. 2 and 3). This class

of waveguides includes rectangular waveguides loaded with

ferrite rods, which have not been rigorously analyzed before.

Following the description of the analysis, convergence prop-

erties of the method are discussed. Numerical results and
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Analyzed structnre. (a) Schematic presentation. (b) Strncture of IG.

experimental data validating our theory are given. The exam-

ples of new, potentially useful structures (e.g., ferrite loaded

waveguides of crossed-rectangular and finned-circular cross

sections) are outlined.

II. ANALYSIS

A cross-sectional geometry of the analyzed waveguide is

shown in Fig, 1(a, ) The following assumptions are made:

1)

2)

3)

Note,

the time dependence is harmonic (the term exp (,jwt)is

suppressed for the sake of clarity);

the structure is homogeneous in the x direction (perpen-

dicular to the plane of the drawing) and the x dependence

is exponential, exp ( –j/?x), where ~ is the propagation

constant;

all conductors in the structure are perfect and constitutive

parameters are linear and time invariant;

however that ferrite and dielectric materials are not

assumed Iossless.
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Fig. 2. Examples of ferrite or dielectric loaded structures which can be

analyzed by our method. (a) Trapezoidal waveguide. (b) “Mage” guide. (c)

Cross-rectangular guide. AG’s assumed as rectangular guides. Other examples
in Fig. 3.
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Fig. 3. AG as (a) sectoral guides and (b) examples of waveguides with
sectorat AG’s.

Essential steps of the analysis are as follows:

1) We divide the structure into regions, in which solutions

of Maxwell’s equations can be found relatively easily,

namely:

● Inner cylindrical guide (IG) is defined in cylindrical

coordinates (delineated with curve &—Fig. l(a)). IG

is transversely inhomogeneous and consists of an

arbitrary number of cylindrical layers. All layers but

the outer most one can be longitudinally magnetized

ferrites.

● Isotropic and homogeneous attached guides (AG).

These guides can take a variety of shapes, for

instance a rectangular guide open at one side (as

in Fig. la), or a sectoral guide (Fig. 3).

2) We find the general solution of Maxwell’s equations

in IG. Here we exploit the trarzsjier matrix concept

(modified for the case of a ferrite IG) to treat the layered

structure of IG [8], and express the field quantities in the

outermost layer of IG in terms of the amplitudes of the

innermost one.

3) We find the field in AG’s in terms of series of eigenfunc-

tions fulfilling all the boundary conditions except those

on the interface with IG.

4) Now we match the fields, i.e., match the general solu-

tions found in the regions described. This yields a set of

function equations.

5) We transform this set of equations into an algebraic

matrix system using the functional analysis techniques

and truncating the series. By elimination of the unknown

set of amplitudes in IG region we arrive at the homoge-

neous system of equations, Setting the determinant of the

system’s matrix to zero, we get the dispersion equation.

A. Fields in IG Region

To find the field vectors in the outermost cylinder of IG

we use the transfer matrix concept [9] adopted for cylindrical

ferrite media. General solutions to Maxwell’s equations in an

arbitrary, say lth, cylinder of IG are obtained first. Since this

layer is filled with ferrite medium magnetized in the direction

of propagation, the electromagnetic field is governed by the

following pair of coupled equations [10]:

where D is an electric flux and H is proportional to magnetic

field-fi = -H, while ,u~t, p~ denote the relative off-

diagonal and diagonal elements of the permeability tensor,

respectively, ~eff[ stands for the relative effective permeability

[11], q is the relative permittivity, and kO = w+ijE.

We seek the solution to (1) in terms of series of eigenfunc-

tions

!-c=-cc k.. (w

Each eigenfunction consists of coupled partial waves Dz and

x.

D:l = D:l + Rt?i:l 11$1 = s@l + li$~ (3)

defined as
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where ~ is an integer number, and the eigenvalues ,YZI,2 can layers, starting from the innermost, we arrive at the following

be found from the following expression: formula:

xl,,, = /:[(a + .) T /(.+ c)’ - ~(ac- bd)] (5) 4k = X&41~L

where where the global transfer matrix ~~

a = k~.l~,fi, – j?2 b = j/?kOel :
L–1

and ,1~(.), Y~ (.) are Bessel and Neumann or modified Bessel

and McDonald functions, depending on the sign of k; – @z.

Note that the coupling coefficients Rt and St

Sl=+ x?, – c
Rl=—

d

vanish when infinite bias magnetization H, is applied.

Once we have obtained the longitudinal field components,

the transverse vectors may be computed from

[% %]”p::]
P

Let us now impose the continuity conditions between two

adjacent IG layers. Due to the orthogonalit y of {eJ’~ } on

the layer interfaces, we can consider continuity for each

eigenfunction separately. Therefore, for the field components

generated by kth eigenfunction, we have

(8)

Substituting the formulas in (2). and quantities obtained from

(11)

is defined as

The transfer matrix approach to the analysis of IG has

several advantages, namely

* the complexity of the inner structure of IG is hidden in

~~,. In subsequent steps of the analysis the IG structure

]s only referred to through the transfer matrix.

* the transfer matrix approach can be easily algorithmized

B. Fields in AG’s

The AG’s may have a variety of cross-sectional shapes,

ranging from rectangular waveguides open at one side, sectoral

guides, to parallel plate guides with magnetic or electric walls.

We require however the Helmholtz equation formulated in AG

region to be separable. Such a general formulation lets us

handle a wide class of AG’s.

The solution of Maxwell’s equations is expressed as a series

of type E and H modes, complete in an AG region

(13)

where i denotes ith AG, n—nth eigenfunction, and e;, h~

are unknown amplitudes. Superscript L indicates quantities

defined in AG’s.

In accordance with the earlier formulation, we assume the

eigenfunctions D$ and H~2 in the following form:

(6) for the field components, we can rewrite (7) in a matrix

form relating amplitudes of eigenfunctions in lth and (1+1)
D~;* = e-’fl’@~Y(ql)T’~*(~z) (14)

~~~~ = e-JpJ’V&*(gl)Q~* (q2)
layers

(15)

~k“A! = &:+l 4+11P=V+1 (9) where: ql, qz are transverse coordinates of a system in which
AG is defined, (y and z in case of Fig. 1).

where ~~ = [-4!1.41t~!1@1]T, and ~~ is given in the The transverse components can be found from [13]
Appendix.

From that we easily proceed to the following equation:

4!+1 = &tr,Yk ~~ lP=.,
’10) E: ::l”cf 3

Now we see that the amplitudes in the layer (1+1) can
-“

be expressed in terms of the amplitudes of lth layer. If we where hl, hz are metric coefficients of coordinate system, and

apply this algorithm consecutively to every pair of adjacent 6 is a separation constant.
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C. Field Matching

At this stage of the analysis we have the general solutions

to Maxwell’s equations in each distinguished region of the

structure. To solve the boundary problem however, we have

to match the jields, i.e., to ensure the continuity of the fields

on all the interfaces between regions. Regions IG and AG’s

partially overlap (Fig. 1), and therefore a number of interfaces

can be specified on which the continuity conditions for the

fields can be imposed. Of practical importance are only these

interfaces, on which it is possible to take advantage of the

orthogonality properties of eigenfunctions i.e., interfaces &

and <. Furthermore, a number of options are available: we

can match all tangential components on ~ or on <, or we

can formulate E field conditions on one and H fields on the

other interface or vice versa. The latter options offer better

numerical behavior of the resulting algorithm, since they lead

to a hi-directional orthogonalization, which provides more

flexibility in selecting the number of eigenfunctions taken for

field approximation in the regions of the structure [8], [12].

We will use this approach henceforth.

Let us co~sider the continuity conditions for E fields on ~,

and for the H fields on f (for the sake of clarity we assume in

this section that AG’s are defined in rectangular coordinates,

as in Fig. 1)

where B is a function selecting ith AG region.

To transform (18) into an algebraic system we take the inner

products of its both sides with every function from the set of

IG eigenfunctions, {e~@ }, with the definition of the inner

product ensuring orthogonality

The operation can formally be written as follows:

As a result we obtain a matrix formula

and the formal description of the procedure is:

(% I ~:(zi))( = (J%I Tk(zi))( (23)

(~ti.t I Q;(zi))( = (E; I Q~(z)c (24)

fori=l,2. . ,iWandn=O,.. .,Ni.

(25)

This operation yields the following matrix relation

(26)

where ~ is built of diagonal matrices and ~ is dense [12].

Inbo~h(21) and (26) we notice the same vectors of unknown

amplitudes. One of them can be eliminated which leads to a

homogeneous system of algebraic equations. After setting its

determinant to zero, the dispersion equation is obtained

(27)

III. APPLICATION OF FFT

Critical from the point of view of the computation efficiency
is the evaluation of the inner products. The inner products

encountered in our algorithm have the form

where S is a certain function of p. These products must be

computed for k ranging from 1 to K, where K is num-

ber of eigenfunctions taken into account in the IG. Simple

transformation of variables, and a modification of S

leads to the modified formula for Sk

Sk = 2m(–1)~~ /’2” ~(@)e-~k@d@.

~–jkp )“ (20) In this formula we easily recognize a term which represents

( a Fourier expansion coefficient of function S(p) and which

may be efficiently computed by FFT. Using this strategy we

have gained three-fold increase in computational speed and

(21) two-fold reduction in computer storage.

where Z is built of diagonal sub matrices, A is dense and

[4 B] T–and [~]T are vectors storing amplfides of eigen-
IV. VERIFICATION AND RESULTS

functions of IG and AG’s, respectively [12].
Numerous numerical and experimental tests have been

A similar procedure is applied to (18). In this case, we take carried out in order to verify the method. Various hollow

the inner product of its both sides with every eigenfunction
and homogeneously filled waveguides were evaluated using

of AG’s. The appropriate inner product for this operation is
the program, and the results obtained matched the known

defined as follows:
analytical formulae. In further tests, parameters of various

.“ dielectric guides were computed for which solutions had

f
(f, ~lt)( g’ Jf(di)’~i(p) K = “ ~(gl’)* dzi (22) previously ‘been published. For example, in Table I results

( —a, of our, and previously published computations of resonance
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TABLE I
COMPUT’EDAND MEASURED RESONANCEFREQUENCIES(IN GHz) OF

QUASI-TEIO L AND QUASI-TEZO I MODES OF AN “IMAGE” GUIDE OF FIG. 5

I Mode II Present I Measured I Theory I The,

., ... .
I TF,, m II 1 ?63 I 1.263 I 1.267 I 1.26

I Amy

II method I [15] 1[151 1[161—
9.— ,”,

11
. . . . 1

TEZO] II 1.678 I 1.672 I 1.700 I 1.678

Relative error in %

Fig. 4. Emorinthe cut-off frequency of the fundamental mode ofa hollow

rectangular waveguide as a function of numbers of modes tuken in IG and
AG’s regions. Waveguide dimensions: 22.86 x 10.16 rmn.

frequencies of an “image” line are presented—a high accuracy

of our method can be observed.

A standard, hollow rectangular waveguide was used to test

the convergence properties of the method. This simple struc-

ture is not a trivial one from the standpoint of the complexity

of the method used in computations of its parameters. Since

the computations of cutoff frequencies are often particularly

prone to errors, we used them as a target in testing. The results,

presented in Fig. 4, display typical features of field (or mode)

matching method, namely:

●

☛

☛

the method can provide very accurate results, the error is

less then 0.03% if 20-30 eigenfunctions are taken in IG

and AG’s,

if the number of eigenfunctions taken into account in

IG substantially differs from that of AG’s, a relative

convergence effect may be observed [14], and

as the number of modes increases the area of low relative

error widens.

In particular, it can be observed in Fig. 4, that if the number

of modes in IG is low, the method may converge to a solution

which carries a relative error of 1Yo. On the other hand, if the
number of modes in IG equals to the total number of modes

in AG’s, a high accuracy is obtained, even if low number of

modes is taken into account.

Dispersion characteristics of a rectangular waveguide con-

taining a magnetized ferrite rod are presented in Fig. 6. As

the frequency approaches ~1 = ~po ~Hi (Hi + itf~ ) (where

gyromagnetic ratio ~ = 27.997.109’ [C/kg]), volume mag-

netostatic waves appear and the fundamental (dynamic) mode

transforms into a magnetostatic one. For frequencies ranging

from fl to ~2 = ~~o (Hi + 0.5&fs) surface magnetostatic

waves may be excited, some having backward wave nature.

Near f2 the second cutoff frequency of the fundamental mode

a
.——— 4

Fig. 5. Shielded “image” guide. e = 2.495, R = 5 cm, a = 20 cm, b = 10
cm. Length of the resonatoc 11.1 cm.

F [G Hz]

Fig. 6. Dispersion characteristics of a rectangular waveguide comprising

longitudinally magnetized ferrite rod. NT, = 1750&~, Hi = 1.143* lkfs.

Waveguide dimensions 22.86 x 10.16 mm.

can be observed. The remaining part of the characteristics is

similar to those of a dielectric loaded waveguide [12].

The proper behavior of the method in computations of

femite loaded structures was verified experimentally. A sec-

tion of a rectangular waveguide loaded with a longitudinally

magnetized ferrite rod was terminated with metallic walls to

form a resonator. The resonance frequency was computed

and measured experimentally as a function of the applied

external biasing magnetic field as shown in Figs. 7 and 8. The

theoretical and experimental data are in good agreement which

validates the method. An interaction between ferrite medium

and em. wave weakens when the ferrite rod is shifted from

the center toward the narrow waveguide wall as illustrated in

Fig. 7. Conversely, if the ferrite material is positioned close

to the wide waveguide wall the interaction with em. field

intensifies and, moreover, the sensitivity to the strength of the

biasing magnetic field increases—Fig. 8. Although this type

of structure is widely used (e.g., in phase shifters) it has not

been rigorously analyzed before.

In a cross-rectangular waveguide comprising longitudinally

magnetized ferrite rod, a Faraday rotation phenomenon can

be observed. This structure provides substantial flexibility in

shaping of the frequency characteristics as shown in Fig. 9,

and is potentially useful in ferrite devices.

V. CONCLUSION

We have presented a method of analysis of waveguides of

complex cross-sectional geometry, comprising longitudinally

magnetized ferrite-dielectric rods. The method can be used

to analyze a wide class of waveguides, including rectangular
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Hi [mT]

Fig. 7. Resonance frequency versus external dc magnetic field in resonator
consisting of a section of rectangular guide loaded with a ferrite rod. (@ =

3 mm, A4s = 950&#, ef = 13), a = 22.86 mm, b = 10.16 mm.
Ah +ffset of the rod from the center towmd narrow waveguide wall.

fr[GHz] ) I 1

7.9 I I“----l
W4’%J

/“-
I
1+

7.1+’ ‘/ I
7.0-

Hi[mT]

Fig. 8. Resonance frequency versus external dc magnetic field in resonator

consisting of a section of rectangular guide loaded with a ferrite rod. (~ =

3 mm, A/f. = 1750&#, Ef = 13.5), a = 22.86 mm, b = 10.16 mm.
Ah, Ao+ffset of the rod from the center toward narrow or wide waveguide
wall, respectively.

r-l 30
R\ — R=4rnm

+! ‘— R=4.5mm
~

\ ‘–- R=6mm

20 /,---y,

\ ‘\
\ ------\

10

h~;,

a /):, ‘“\ “’’~--

k,
1 ‘.

o
10.0 10.5 11.0 11.5 12.0

f[GHz]

Fig. 9. Rotation of the polarization plane in a cross-rectangular waveguide

commisinz longitudinally magnetized ferrite. r = 2.5 mm, a = 7 mm,

waveguides loaded with ferrite rods. These structures have
not been rigorously analyzed before. In computations of inner

products encountered in the method we used FFT techniques

which resulted in greater computational speed and reduced

computer storage requirements. The numerical and experimen-

tal results provided validate the method of analysis presented

in the paper.

APPENDIK

&l =

and J11,2 (or Y) denote appropriate Bessel function of awu-

ment xi ,2p, while prime denotes differentiation with respect

to p.
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